Diffusion Tensor Image Registration Using Tensor Geometry and Orientation Features
نویسندگان
چکیده
This paper presents a method for deformable registration of diffusion tensor (DT) images that integrates geometry and orientation features into a hierarchical matching framework. The geometric feature is derived from the structural geometry of diffusion and characterizes the shape of the tensor in terms of prolateness, oblateness, and sphericity of the tensor. Local spatial distributions of the prolate, oblate, and spherical geometry are used to create an attribute vector of geometric feature for matching. The orientation feature improves the matching of the WM fiber tracts by taking into account the statistical information of underlying fiber orientations. These features are incorporated into a hierarchical deformable registration framework to develop a diffusion tensor image registration algorithm. Extensive experiments on simulated and real brain DT data establish the superiority of this algorithm for deformable matching of diffusion tensors, thereby aiding in atlas creation. The robustness of the method makes it potentially useful for group-based analysis of DT images acquired in large studies to identify disease-induced and developmental changes.
منابع مشابه
DTI-DROID: Diffusion tensor imaging-deformable registration using orientation and intensity descriptors
This article presents a method (DROID) for deformable registration of diffusion tensor (DT) images that utilizes the full tensor information by integrating the intensity and orientation features into a hierarchical matching framework. The intensity features are derived from eigen value based measures that characterize the tensor in terms of its different shape properties, such as, prolateness, ...
متن کاملDiffusion-tensor image registration
In this chapter, we introduce the problem of registering diffusion tensor magnetic resonance (DT-MR) images. The registration task for these images is made challenging by the orientational information they contain, which is affected by the registration transformation. This information about orientation and other aspects of the diffusion tensor are exploited in the development of similarity meas...
متن کاملDifferentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging
Background: Presurigical planning for glioma tumor resection and radiotherapy treatment require proper delineation of tumoral and peritumoral areas of brain. Diffusion tensor imaging (DTI) is the most common mathematical model applied for diffusion weighted MRI data. Neurite orientation dispersion and density imaging (NODDI) is another mathematical model for DWI data modeling.Objective: We stud...
متن کاملAssessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation
Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...
متن کاملDiffusion Tensor Image Registration with Combined Tract and Tensor Features
Registration of diffusion tensor (DT) images is indispensible, especially in white-matter studies involving a significant amount of data. This task is however faced with challenging issues such as the generally low SNR of diffusion-weighted images and the relatively high complexity of tensor representation. To improve the accuracy of DT image registration, we design an attribute vector that enc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 11 Pt 2 شماره
صفحات -
تاریخ انتشار 2008